Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a differentiable function satisfying the functional rule f ( xy )= f ( x )+ f ( y )+ xy - x - y ∀ x , y >0 and f prime(1)=4 then ∫ (f(x)/x) d x is equal to [Note: ' C ' is constant of integration.]
Q. Let
f
be a differentiable function satisfying the functional rule
f
(
x
y
)
=
f
(
x
)
+
f
(
y
)
+
x
y
−
x
−
y
∀
x
,
y
>
0
and
f
′
(
1
)
=
4
then
∫
x
f
(
x
)
d
x
is equal to
[Note: '
C
' is constant of integration.]
690
125
Integrals
Report Error
A
3
ln
2
x
+
x
+
C
6%
B
3
ln
x
+
x
+
C
9%
C
2
3
ln
x
+
x
+
C
9%
D
2
3
ln
2
x
+
x
+
C
76%
Solution:
Differentiable w.r.t.
X
y
f
′
(
x
y
)
=
f
′
(
x
)
+
y
−
1
Put
x
=
1
y
f
′
(
y
)
=
f
′
(
1
)
+
y
−
1
y
f
′
(
y
)
=
y
+
3
∴
f
′
(
y
)
=
1
+
y
3
Integrating
g
(
y
)
=
y
+
3
ln
y
+
C
Also,
f
(
1
)
=
1
C
=
0
∴
f
(
x
)
=
3
ln
x
+
x
∫
x
f
(
x
)
d
x
=
∫
x
3
l
n
x
d
x
+
∫
d
x
=
2
3
ln
2
x
+
x
+
C