Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a differentiable function satisfying f(x y)=x f(y)+y f(x)-2 x-2 y+2 ∀ x, y>0. If f prime(1)=1 then [Note: k denotes fractional part function of k.]
Q. Let
f
be a differentiable function satisfying
f
(
x
y
)
=
x
f
(
y
)
+
y
f
(
x
)
−
2
x
−
2
y
+
2∀
x
,
y
>
0
. If
f
′
(
1
)
=
1
then
[Note:
{
k
}
denotes fractional part function of
k
.]
239
111
Differential Equations
Report Error
A
x
→
0
+
Lim
x
2
f
(
e
x
)
−
{
x
}
−
2
=
−
1
B
x
→
0
+
Lim
x
2
f
(
e
x
)
−
{
x
}
−
2
=
1
C
minimum value of
f
(
x
)
is
2
−
e
1
D
minimum value of
f
(
x
)
occurs at
x
=
e
.
Solution:
f
(
x
y
)
=
x
f
(
y
)
+
y
f
(
x
)
−
2
(
x
+
y
)
+
2
partially differentiating w.r.t.
x
f
′
(
x
y
)
y
=
f
(
y
)
+
y
f
′
(
x
)
−
2
putting
x
=
1
f
′
(
y
)
y
=
f
(
y
)
+
y
−
2
f
′
(
x
)
x
=
f
(
x
)
=
x
−
2
d
x
d
y
−
x
y
=
1
−
x
2
(linear differential equation)
I.F.
=
e
∫
x
−
1
d
x
=
e
−
l
n
x
=
x
1
y
⋅
x
1
=
∫
x
1
(
1
−
x
2
)
d
x
+
C
x
y
=
ln
x
+
x
2
+
C
;
f
(
1
)
=
2
⇒
C
=
0
y
=
x
ln
x
+
2
=
f
(
x
)
Now,
(A) &(B)
x
→
0
+
Lim
x
2
f
(
e
x
)
−
{
x
}
−
2
=
x
→
0
+
Lim
x
2
x
e
x
+
2
−
{
x
}
−
2
=
x
→
0
+
Lim
x
2
x
(
e
x
−
1
)
=
1
(C)
f
(
x
)
=
x
ln
x
+
2
f
′
(
x
)
=
x
⋅
x
1
+
ln
x
⋅
1
=
1
+
ln
x
for
x
>
e
1
,
f
(
x
)
is increasing
for
0
<
x
<
e
1
,
f
(
x
)
is decreasing
∴
f
(
x
)
∣
m
i
n
.
=
f
(
e
1
)
=
e
−
1
+
2
⇒
(C) is correct
(D)
f
(
x
)
→
∞
as
x
→
∞