Q.
Let f be a differentiable function satisfying f(x)=320∫3f(3λ2x)dλ,x>0 and f(1)=3.
If y=f(x) passes through the point (α,6), then α is equal to_______
Let, 3λ2x=t ⇒32λxdλ=dt ⇒dλ=23⋅x⋅3t1xdt ⇒dλ=23⋅x1⋅tdt
So, f(x)=x1∫0xtf(t)dt ⇒x⋅f′(x)+2xf(x)=xf(x) ⇒x⋅f′(x)=2xf(x) ⇒ydy=2xdx ⇒lny=21lnx+c⇒f(x)=x ⇒y=3x{ as f(1)=3}
So, f(x)=3x
Now, f(α)=6⇒36=3α ⇒α=12