Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a differentiable function defined on [0, (π/2)] such that f(x)>0 and f(x)+∫ limits0x f(t) √1-( log e f(t))2 d t=e, ∀ x ∈[0, (π/2)]. Then (6 log e f((π/6)))2 is equal to
Q. Let
f
be
a
differentiable function defined on
[
0
,
2
π
]
such that
f
(
x
)
>
0
and
f
(
x
)
+
0
∫
x
f
(
t
)
1
−
(
lo
g
e
f
(
t
)
)
2
d
t
=
e
,
∀
x
∈
[
0
,
2
π
]
. Then
(
6
lo
g
e
f
(
6
π
)
)
2
is equal to _______
986
135
JEE Main
JEE Main 2023
Integrals
Report Error
Answer:
27
Solution:
f
(
x
)
+
0
∫
x
f
(
t
)
1
−
(
lo
g
e
f
(
t
)
)
2
d
t
=
e
⇒
f
(
0
)
=
e
f
′
(
x
)
+
f
(
x
)
1
−
(
ln
f
(
x
)
)
2
=
0
f
(
x
)
=
y
d
x
d
y
=
−
y
1
−
(
ln
y
)
2
∫
y
1
−
(
l
n
y
)
2
d
y
=
−
∫
d
x
Put
ln
y
=
t
∫
1
−
t
2
d
t
=
−
x
+
C
sin
−
1
t
=
−
x
+
C
⇒
sin
−
1
(
ln
y
)
=
−
x
+
C
sin
−
1
(
ln
f
(
x
))
=
−
x
+
C
f
(
0
)
=
e
⇒
2
π
=
C
⇒
sin
−
1
(
ln
f
(
x
))
=
−
x
+
2
π
⇒
sin
−
1
(
ln
f
(
6
π
)
)
=
6
−
π
+
2
π
⇒
sin
−
1
(
ln
f
(
6
π
)
)
=
3
π
⇒
ln
f
(
6
π
)
=
2
3
,
we need
(
6
×
2
3
)
2
=
27