put lnx=t⇒x=et
for x>1;f′(t)=et for t>0
integrating f(t)=et+C;f(0)=e0+C⇒C=−1 (given f(0)=0 ) ∴f(t)=et−1 for t>0 (corresponding to x>1 )
hence f(x)=ex−1 for x>0....(1)
again for 0<x≤1 f′(lnx)=1(x=et) f′(t)=1 for t≤0 f(t)=t+C f(0)=0+C⇒C=0⇒f(t)=t for t≤0⇒f(x)=x for x≤0