Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(b) be the minimum value of the expression y=x2-2x+(b3 - 3 b2 + 4)∀ x∈ R. Then, the maximum value of f(b) as b varies from 0 to 4 is<gwmw style=display:none;></gwmw>
Q. Let
f
(
b
)
be the minimum value of the expression
y
=
x
2
−
2
x
+
(
b
3
−
3
b
2
+
4
)
∀
x
∈
R
.
Then, the maximum value of
f
(
b
)
as
b
varies from
0
to
4
is
1181
152
NTA Abhyas
NTA Abhyas 2022
Report Error
A
20
B
19
C
63
D
64
Solution:
y
=
(
x
−
1
)
2
+
b
3
−
3
b
2
+
3
∴
y
m
i
n
=
f
(
b
)
=
b
3
−
3
b
2
+
3
Now,
f
′
(
b
)
=
3
b
2
−
6
b
=
3
b
(
b
−
2
)
Also,
f
(
0
)
=
3
f
(
2
)
=
−
1
f
(
4
)
=
19
∴
max
f
(
b
)
=
19