Q.
Let f and g be two differentiable functions defined from R→R+. If f(x) has a local maximum at x=c and g(x) has a local minimum at x=c, then h(x)=g(x)f(x)
Given, h(x)=g(x)f(x) ⇒h′(x)=g2(x)g(x)f′(x)−f(x)g′(x)
Clearly, h′(c)=0( As, f′(c)=0 and g′(c)=0) So, h′(c−)=g2(c−)g(c−)f′(c−)−f(c−)⋅g′(c−)[f′(c−)>0;g′(c−)<0;f(c−)>0;g(c−)>0] ∴h′(c−)>0 ∣∣∣lyh′(c+)<0
So, h(x) has a local maximum at x=c.