Q.
Let f and g be twice differentiable functions on R such that f′′(x)=g′′(x)+6x f′(1)=4g′(1)−3=9 f(2)=3g(2)=12
Then which of the following is NOT true ?
f′′(x)=g′′(x)+6x....(1) f′(1)=4g′(1)−3=9....(2) f(2)=3g(2)=12 ....(3)
By integrating (1) f′(x)=g′(x)+62x2+C
At x=1, f′(1)=g′(1)+3+C ⇒9=4+3+C⇒C=3 ∴f′(x)=g′(x)+3x2+3
Again by integrating, f(x)=g(x)+33x3+3x+D At x=2 f(2)=g(2)+8+3(2)+D ⇒12=4+8+6+D⇒D=−6
So, f(x)=g(x)+x3+3x−6 ⇒f(x)−g(x)=x3+3x−6
At x=−2, ⇒g(−2)−f(−2)=20 (Option (1) is true)
Now, for −1<x,2 h(x)=f(x)−g(x)=x3+3x−6 ⇒h′(x)=3x2+3 ⇒h(x)↑
So, h(−1)<h(x)<h(2) ⇒−10<h(x)<8 ⇒∣h(x)∣<10 (option (2) is NOT true)
Now, h′(x)=f′(x)−g′(x)=3x2+3
If ∣h′(x)∣<6⇒∣∣3x2+3∣∣<6 ⇒3x2+3<6 ⇒x2<1 ⇒−1<x<1 (option (3) is True)
If x∈(−1,1)∣f′(x)−g′(x)∣<6
option (3) is true and now to solve f(x)−g(x)=0 ⇒x3+3x−6=0 h(x)=x3+3x−6
here, h(1)=− ve and h(23)=+ ve
So there exists x0∈(1,23) such that f(x0)=g(x0)
(option (4) is true)