f '(x) > 0 if x ≥ 0 and g'(x) < 0 if x ≥ 0
Let h(x) = f (g(x))
then h'(x) = f '(g(x)).g'(x) < 0 if x ≥ 0 ∴ h(x) is decreasing function ∴ h(x) ≤ h(0) if x ≥ 0 ∴ f (g(x)) ≤ f (g(0)) = 0
But codomain of each function is [0, ∞ ) ∴ f (g(x)) = 0 for all x ≥ 0 ∴ f (g(x)) = 0
Also g( f (x)) ≤ g( f (0)) [as above]