Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let F (α)= [ cos α - sin α 0 sin α cos α 0 0 0 1] where α ∈ R. Then [ F (α)]-1 is equal to
Q. Let
F
(
α
)
=
⎣
⎡
cos
α
sin
α
0
−
sin
α
cos
α
0
0
0
1
⎦
⎤
where
α
∈
R
. Then
[
F
(
α
)
]
−
1
is equal to
2541
228
Matrices
Report Error
A
F
(
−
α
)
19%
B
F
(
α
−
1
)
45%
C
F
(
2
α
)
23%
D
None of these
12%
Solution:
F
(
α
)
⋅
F
(
−
α
)
=
⎣
⎡
cos
α
sin
α
0
−
sin
α
cos
α
0
0
0
1
⎦
⎤
⎣
⎡
cos
(
−
α
)
sin
(
−
α
)
0
−
sin
(
−
α
)
cos
(
−
α
)
0
0
0
1
⎦
⎤
F
(
α
)
⋅
F
(
−
α
)
=
⎣
⎡
cos
α
sin
α
0
−
sin
α
cos
α
0
0
0
1
⎦
⎤
⎣
⎡
cos
α
−
sin
α
0
sin
α
cos
α
0
0
0
1
⎦
⎤
=
⎣
⎡
cos
2
α
+
sin
2
α
+
0
sin
α
cos
α
−
sin
α
cos
α
+
0
0
+
0
+
0
cos
α
sin
α
−
cos
α
sin
α
+
0
sin
2
α
+
cos
2
α
+
0
0
+
0
+
0
0
+
0
+
0
0
+
0
+
0
0
+
0
+
1
⎦
⎤
=
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
=
I
[
∵
cos
2
α
+
sin
2
α
=
1
]
F
(
α
)
⋅
F
(
−
α
)
=
1
∴
[
F
(
α
)
]
−
1
=
F
(
−
α
)