Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(a)=∫ limits0a ln (1+ tan a tan x) d x, then f prime((π/4)) equals
Q. Let
f
(
a
)
=
0
∫
a
ln
(
1
+
tan
a
tan
x
)
d
x
, then
f
′
(
4
π
)
equals
52
93
Integrals
Report Error
A
4
π
+
2
l
n
2
B
2
π
+
2
l
n
2
C
4
π
+
ln
2
D
2
π
+
ln
2
Solution:
I
=
0
∫
a
ln
(
1
+
tan
a
tan
x
)
d
x
...(1)
I
=
0
∫
a
(
ln
(
1
+
tan
a
tan
(
a
−
x
)))
d
x
(Applyking)
=
0
∫
a
ln
(
1
+
1
+
t
a
n
a
t
a
n
x
(
t
a
n
a
(
t
a
n
a
−
t
a
n
x
))
)
d
x
=
0
∫
a
ln
(
1
+
t
a
n
a
t
an
x
1
+
t
a
n
2
a
)
d
x
....(2)
2
I
=
0
∫
a
ln
(
sec
2
a
)
d
x
=
a
⋅
ln
sec
2
a
I
=
a
ln
(
sec
a
)
d
a
d
(
a
ln
sec
a
)
=
ln
(
sec
a
)
+
a
(
s
e
c
a
s
e
c
a
)
tan
a
=
a
tan
a
+
ln
sec
a