Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f :(-5,5) arrow R be a differentiable function with f (4)=1, f prime(4)=1, f (0)=-1 and f prime(0)=1. If g(x)=(f(2 f2(x)+2))2, then g prime(0) equals
Q. Let
f
:
(
−
5
,
5
)
→
R
be a differentiable function with
f
(
4
)
=
1
,
f
′
(
4
)
=
1
,
f
(
0
)
=
−
1
and
f
′
(
0
)
=
1
. If
g
(
x
)
=
(
f
(
2
f
2
(
x
)
+
2
)
)
2
, then
g
′
(
0
)
equals
100
111
Continuity and Differentiability
Report Error
A
4
B
-4
C
8
D
-8
Solution:
g
′
(
x
)
=
2
f
(
2
f
2
(
x
)
+
2
)
×
f
′
(
2
f
2
(
x
)
+
2
)
×
4
f
(
x
)
⋅
f
′
(
x
)
g
′
(
0
)
=
2
f
(
2
f
2
(
0
)
+
2
)
×
f
′
(
2
f
2
(
0
)
+
2
)
×
4
f
(
0
)
⋅
f
′
(
0
)
=
2
f
(
4
)
⋅
f
′
(
4
)
⋅
4
f
(
0
)
f
′
(
0
)
=
2
×
4
(
−
1
)
(
1
)
=
−
8