Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f :[4, ∞) arrow[1, ∞) be a function defined by f ( x )=5 x ( x -4), then f -1( x ) is
Q. Let
f
:
[
4
,
∞
)
→
[
1
,
∞
)
be a function defined by
f
(
x
)
=
5
x
(
x
−
4
)
, then
f
−
1
(
x
)
is
2080
206
Relations and Functions - Part 2
Report Error
A
2
−
4
+
lo
g
5
x
0%
B
2
+
4
+
lo
g
5
x
100%
C
(
5
1
)
x
(
x
−
4
)
0%
D
None of these
0%
Solution:
Let
y
=
5
x
(
x
−
4
)
⇒
x
(
x
−
4
)
=
lo
g
5
y
⇒
x
2
−
4
x
−
lo
g
5
y
=
0
⇒
x
=
2
4
±
16
+
4
l
o
g
5
y
=
(
2
±
4
+
lo
g
5
y
)
But
x
≥
4
,
so
x
=
(
2
+
4
+
lo
g
5
y
)
∴
f
−
1
(
x
)
=
2
+
4
+
lo
g
5
x