Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f1(x)=(3 x+2/2 x+3), x ∈ R - (-3/2) For n ≥ 2, define f n (x)=f1 o f n -1(x). If f5(x)=( a x+ b / b x+ a ), operatornamegcd( a , b )=1, then a + b is equal to
Q. Let
f
1
(
x
)
=
2
x
+
3
3
x
+
2
,
x
∈
R
−
{
2
−
3
}
For
n
≥
2
, define
f
n
(
x
)
=
f
1
o
f
n
−
1
(
x
)
.
If
f
5
(
x
)
=
b
x
+
a
a
x
+
b
,
gcd
(
a
,
b
)
=
1
, then
a
+
b
is equal to ______
662
127
JEE Main
JEE Main 2023
Relations and Functions - Part 2
Report Error
Answer:
3125
Solution:
f
1
(
x
)
=
2
x
+
3
3
x
+
2
⇒
f
2
(
x
)
=
12
x
+
13
13
x
+
12
⇒
f
3
(
x
)
=
62
x
+
63
63
x
+
62
∴
f
5
(
x
)
=
1562
x
+
1563
1563
x
+
1562
a
+
b
=
3125