Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(θ) = (1+sin2θ)(2-sin2θ). Then for all values of θ
Q. Let
f
(
θ
)
=
(
1
+
s
i
n
2
θ
)
(
2
−
s
i
n
2
θ
)
. Then for all values of
θ
2222
210
WBJEE
WBJEE 2013
Trigonometric Functions
Report Error
A
f
(
θ
)
>
4
9
14%
B
f
(
θ
)
<
2
27%
C
f
(
θ
)
>
4
11
21%
D
2
≤
f
(
θ
)
≤
4
9
37%
Solution:
Given
f
(
θ
)
=
(
1
+
sin
2
θ
)
(
2
−
sin
2
θ
)
=
2
+
2
sin
2
θ
−
sin
2
θ
−
sin
4
θ
=
−
sin
4
θ
+
sin
2
θ
+
2
=
−
(
sin
4
θ
−
sin
2
θ
−
2
)
=
−
{
sin
4
θ
−
sin
2
θ
+
4
1
−
4
9
}
=
+
4
9
−
(
sin
2
θ
−
2
1
)
2
....(i)
∵
−
1
≤
sin
θ
≤
1
⇒
0
≤
sin
2
θ
≤
1
⇒
−
2
1
≤
sin
2
θ
−
2
1
≤
2
1
⇒
0
≤
(
sin
2
θ
−
2
1
)
2
≤
4
1
⇒
0
≥
−
(
sin
2
θ
−
2
1
)
2
≥
−
4
1
⇒
4
9
≥
4
9
−
(
sin
2
θ
−
2
1
)
2
≥
4
9
−
4
1
⇒
2
≤
f
(
θ
)
≤
4
9
[from Eq.(i)]