f′(x)=x21+xx​−ℓn(1+x)​ =x2(1+x)x−(1+x)ℓn(1+x)​
Suppose h(x)=x−(1+x)ℓn(1+x) ⇒h′(x)=1−ℓn(1+x)−1=−ln(1+x) h′(x)>0,∀x∈(−1,0) h′(x)<0,∀x∈(0,∞) h(0)=0⇒h′(x)<0∀x∈(−1,∞) ⇒f′(x)<0∀x∈(−1,∞) ⇒f(x) is a decreasing function for all x∈(−1,∞)