$f'(x)=\frac{\frac{x}{1+x}-\ell n(1+x)}{x^{2}}$
$=\frac{x-(1+x) \ell n(1+x)}{x^{2}(1+x)}$
Suppose $h(x)=x-(1+x) \ell n(1+x)$
$\Rightarrow h'(x)=1-\ell n(1+x)-1=-\ln (1+x)$
$h ^{\prime}( x )>0, \forall x \in(-1,0)$
$h'( x )<0, \forall x \in(0, \infty)$
$h (0)=0 \Rightarrow h'( x )<0 \forall x \in(-1, \infty)$
$\Rightarrow f'( x )<0 \forall x \in(-1, \infty)$
$\Rightarrow f ( x )$ is a decreasing function for all $x \in(-1, \infty)$