61∫xf(t)dt=3xf(x)−x3 ⇒6f(x)=3f(x)+3xf′(x)−3x2 ⇒3f(x)=3xf′(x)−3x2 ⇒xf′(x)−f(x)=x2 ⇒xdxdy−y=x2 ⇒dxdy−x1y=x ...(i) I.F=e∫x1dx=e−logex
Multiplying (i) both sides by x1 x1dxdy−x21y=1 ⇒dxd(y⋅x1)=1
integrating xy=x+c
Put x=1,y=2 ⇒2=1+c ⇒c=1 ⇒y=x2+x ⇒f(x)=x2+x ⇒f(2)=6
Note: If we put x=1 in the given equation we get f(1)=1/3.