Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f :((-1/√2), 1] arrow(-∞, ln √2] be a function defined as f ( x )= ln ( x +√1- x 2) and g ( x ) =( x 2/ f ( x )). If f ( x 0)= ln √2 then
Q. Let
f
:
(
2
−
1
,
1
]
→
(
−
∞
,
ln
2
]
be a function defined as
f
(
x
)
=
ln
(
x
+
1
−
x
2
)
and
g
(
x
)
=
f
(
x
)
x
2
. If
f
(
x
0
)
=
ln
2
then
38
131
Continuity and Differentiability
Report Error
A
g
(
x
0
)
=
2
l
n
2
1
B
g
(
x
0
)
=
lo
g
2
e
C
g
′
(
x
0
)
=
2
2
lo
g
2
e
D
g
′
(
x
0
)
=
2
lo
g
e
2
Solution:
f
(
x
0
)
=
ln
2
=
ln
(
x
0
+
1
−
x
0
2
)
⇒
x
0
=
2
1
g
(
x
)
=
f
(
x
)
x
2
⇒
g
′
(
x
)
=
f
2
(
x
)
f
(
x
)
⋅
2
x
−
x
2
f
′
(
x
)
⇒
g
′
(
x
0
)
=
f
2
(
x
0
)
2
x
0
f
(
x
0
)
−
x
2
f
′
(
x
0
)
{
Θ
f
′
(
x
0
)
=
0
}
g
′
(
x
0
)
=
f
(
x
0
)
2
x
0
=
l
n
2
2
⋅
2
1
=
2
2
lo
g
2
e
⋅