Q. Let $f :\left(\frac{-1}{\sqrt{2}}, 1\right] \rightarrow(-\infty, \ln \sqrt{2}]$ be a function defined as $f ( x )=\ln \left( x +\sqrt{1- x ^2}\right)$ and $g ( x )$ $=\frac{ x ^2}{ f ( x )}$. If $f \left( x _0\right)=\ln \sqrt{2}$ then
Continuity and Differentiability
Solution: