Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:(0, ∞) arrow R be given by f(x)=∫ limits1 / xx e-(t+(1/t)) (d t/t), then
Q. Let
f
:
(
0
,
∞
)
→
R
be given by
f
(
x
)
=
1/
x
∫
x
e
−
(
t
+
t
1
)
t
d
t
, then
1719
216
JEE Advanced
JEE Advanced 2014
Report Error
A
f
(
x
)
is monotonically increasing on
[
1
,
∞
)
B
f
(
x
)
is monotonically decreasing on
(
0
,
1
)
C
f
(
x
)
+
f
(
x
1
)
=
0
, for all
x
∈
(
0
,
∞
)
D
f
(
2
x
)
is an odd function of
x
on
R
.
Solution:
f
′
(
x
)
=
x
2
e
−
(
x
+
x
1
)
Which is increasing in
[
1
,
∞
)
Also,
f
(
x
)
+
f
(
x
1
)
=
0
g
(
x
)
=
f
(
2
x
)
=
2
−
x
∫
2
x
t
e
−
(
t
+
t
1
)
d
t
g
(
−
x
)
=
2
x
∫
2
−
x
t
e
−
(
t
+
t
1
)
d
t
=
−
g
(
x
)
Hence, an odd function