$f '( x )=\frac{2 e ^{-\left( x +\frac{1}{ x }\right)}}{ x }$
Which is increasing in $[1, \infty)$
Also, $f(x)+f\left(\frac{1}{x}\right)=0$
$g(x)=f\left(2^{x}\right)=\int\limits_{2^{-x}}^{2^{x}} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t $
$g(-x)=\int\limits_{2^{x}}^{2^{-x}} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t=-g(x)$
Hence, an odd function