Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:[0,2] arrow R be the function defined by f(x)=(3- sin (2 π x)) sin (π x-(π/4))- sin (3 π x+(π/4)) If α, β ∈[0,2] are such that x ∈[0,2]: f(x) ≥ 0 =[α, β], then the value of β-α is .
Q. Let
f
:
[
0
,
2
]
→
R
be the function defined by
f
(
x
)
=
(
3
−
sin
(
2
π
x
))
sin
(
π
x
−
4
π
)
−
sin
(
3
π
x
+
4
π
)
If
α
,
β
∈
[
0
,
2
]
are such that
{
x
∈
[
0
,
2
]
:
f
(
x
)
≥
0
}
=
[
α
,
β
]
, then the value of
β
−
α
is ______.
2228
165
JEE Advanced
JEE Advanced 2020
Report Error
Answer:
1
Solution:
Let
π
x
=
θ
f
(
x
)
=
(
3
−
sin
2
θ
)
sin
(
θ
−
4
π
)
−
sin
(
3
θ
+
4
π
)
=
(
3
−
sin
2
θ
)
2
(
s
i
n
θ
−
c
o
s
θ
)
−
(
2
s
i
n
3
θ
+
2
c
o
s
3
θ
)
=
2
1
[
(
3
−
sin
2
θ
)
(
sin
θ
−
cos
θ
)
−
(
3
sin
θ
−
3
cos
θ
−
4
sin
3
θ
+
4
cos
3
θ
)
]
=
2
1
[(
3
−
sin
2
θ
)
(
sin
θ
−
cos
θ
)
−
{
3
(
sin
θ
−
cos
θ
)
−
4
(
sin
θ
−
cos
θ
)
(
1
+
2
s
i
n
2
θ
)
}
]
=
2
(
s
i
n
θ
−
c
o
s
θ
)
(
3
−
sin
2
θ
+
1
+
2
sin
2
θ
)
∴
For
f
(
x
)
≥
0
∴
[
α
,
β
]
=
[
4
1
,
4
5
]
⇒
[
β
−
α
]
=
4
5
−
4
1
=
1