Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:(0,2) arrow R be defined as f(x)= log 2(1+ tan ((π x/4))) . Then, lim n arrow ∞ (2/n)(f((1/n))+f((2/n))+ ldots+f(1)) is equal to .
Q. Let
f
:
(
0
,
2
)
→
R
be defined as
f
(
x
)
=
lo
g
2
(
1
+
tan
(
4
π
x
)
)
.
Then,
lim
n
→
∞
n
2
(
f
(
n
1
)
+
f
(
n
2
)
+
…
+
f
(
1
)
)
is equal to _______ .
2161
207
JEE Main
JEE Main 2021
Integrals
Report Error
Answer:
1
Solution:
E
=
2
lim
n
→
∞
∑
r
=
1
n
n
1
f
(
n
r
)
E
=
l
n
2
2
∫
0
1
ln
(
1
+
tan
4
π
x
)
d
x
replacing
x
→
1
−
x
E
=
l
n
2
2
∫
0
1
ln
(
1
+
tan
4
π
(
1
−
x
)
)
d
x
E
=
l
n
2
2
∫
0
1
ln
(
1
+
tan
(
4
π
−
4
π
x
)
)
d
x
E
=
ℓ
n
2
2
∫
0
1
ln
(
1
+
1
+
t
a
n
4
π
x
1
+
t
a
n
4
π
x
)
d
x
E
=
l
n
2
2
∫
0
1
ln
(
1
+
t
a
n
4
π
x
2
)
d
x
E
=
ℓ
n
2
2
∫
0
1
(
ln
2
−
ln
(
1
+
tan
4
π
x
)
)
d
x
equation (i)
+
(ii)
E
=
1