Q.
Let $f:(0,2) \rightarrow R$ be defined as
$f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4}\right)\right) .$
Then, $\lim _{n \rightarrow \infty} \frac{2}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\ldots+f(1)\right)$ is equal to _______ .
Solution: