We havef(x)=⎩⎨⎧360−5x,10,31−3x,0≤x≤66≤x≤77≤x≤10
Now, f(x)=10∀x∈[6,7]
So, f(x) is not one-one.
Again, 0≤x≤6 ⇒−30≤−5x≤0 ⇒60−30≤60−5x≤60 ⇒10≤360−5x≤20 and 7≤x≤10 ⇒−30≤−3x≤−21 ⇒1≤31−3x≤10 ∴ Range of f(x)=[1,20]
It is given that co-domain of f(x)=[1,20] ∴ Range of f(x)= co-domain of f(x)
So, f(x) is onto.