Q.
Let f:[0,1]→R be such that f(xy)=f(x)⋅f(y), for all x,y∈[0,1], and f(0)=0.If y=y(x)satisfies the differential equation,dxdy=f(x) with y(0)=1, then y(41)+y(43) is equal to
f(xy)=f(x)⋅f(y)
Put x=y=0 in (1) to get f(0)=1
Put x=y=1 in (1) to get f(1)=0 or f(1)=1 f(1)=0 is rejected else y=1 in (1) gives f(x)=0
imply f(0)=0
Hence f(0)=1 and f(1)=1
By first principle derivative formula, f′(x)=h→0limhf(x+h)−f(x) =h→0limf(x)(hf(1+xh)−f(1)) ⇒f′(x)=xf(x)f′(1) ⇒f(x)f′(x)=xk ⇒1nf(x)=k1nx+c f(1)=1⇒1n1=k1n1+c⇒c=0 ⇒1nf(x)=k1nx⇒f(x)=xk but f(0)=1 ⇒k=0 ∴f(x)=1 dxdy=f(x)=1 ⇒y=x+c,y(0)=1 1⇒c=1 ⇒y=x+1 ∴y(41)+y(43)=41+1+43+1=3