Q. Let $f: \left[0, 1\right]\to R$ be such that $f\left(xy\right) =f\left(x\right)\cdot f\left(y\right)$, for all $x, y \in \left[0, 1\right]$, and $f \left(0\right)\ne0$.If $y=y\left(x\right)$satisfies the differential equation,$\frac{dy}{dx} = f\left(x\right)$ with $y\left(0\right) =1$, then $y\left(\frac{1}{4}\right) +y\left(\frac{3}{4}\right)$ is equal to
Differential Equations
Solution: