Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:[0,1] arrow R be a differentiable function with f(0)=0, then undersetn arrow ∞ textLim n2 ∫ limits0(1/n) f(t) d t equals
Q. Let
f
:
[
0
,
1
]
→
R
be a differentiable function with
f
(
0
)
=
0
, then
n
→
∞
Lim
n
2
0
∫
n
1
f
(
t
)
d
t
equals
948
85
Integrals
Report Error
A
2
1
f
′
(
0
)
B
f
′
(
0
)
C
2
f
′
(
0
)
D
0
Solution:
Let
I
=
n
→
∞
Lim
n
2
0
∫
n
1
f
(
t
)
d
t
=
n
→
∞
Lim
n
2
1
0
∫
1/
n
f
(
t
)
d
t
(
0
0
form, as
n
→
∞
)
Using L'Hospital's rule and Using Leibnitz rule, we get
I
=
n
→
∞
Lim
−
2
n
3
f
(
n
1
)
(
n
2
−
1
)
=
n
→
∞
Lim
2
n
f
(
n
1
)
Put
n
=
h
1
, hence
I
=
2
1
n
→
∞
Lim
(
h
f
(
0
+
h
)
−
f
(
0
)
)
=
2
1
f
′
(
0
)