Given that, f(x)=e(x)x1,x>0
Taking log on both sides, we get log+(x)=(x)x1=g(x)( say )…(i)
Here,g(x)=xx1 ⇒logg(x)=x1logx
On differentiating w.r.t. x, we get ⋅g(x)1⋅g′(x)=x2x⋅x1−logx =(x21−logx) ⇒g′(x)=x(x1−2)(1−logxˉ)
For maximum or minimum of g(x) put g′(x)=0 ⇒x(x1−2)(1−logx)=0 ⇒logx=1=loge ⇒x=e
and g′′(x)∣x=e>0
So, g(x) is minimum at x=e ∴g(x) increases in (0,e) and decreases in (e,∞) it will be minimum at either 2 or 5 ∴221>551 ⇒ Minimum value of f(x)=e(5)51