- Tardigrade
- Question
- Mathematics
- Let E1 = x ∈ mathbb R: x ≠1 and (x/x-1) > 0 and E2 = x ∈ E1: sin-1( loge ((x/x-1))) is a real number . (Here, the inverse trigonometric function sin-1 x assumes values in ( - (π/2) , (π/2) ] .) Let f :E1 → mathbb R be the function defined by f(x) = loge ((x/x-1)) and g: E2 → mathbb R be the function defined by g(x) = sin-1 ( loge ( (x/x-1) ) ). List-I List-II P. The range of f is 1. (- ∞ ,. (1/1 -e) ] ∪ [ (e/e -1) , ∞ ) Q. The range of f contains 2 (0,1) R. The domain of f contains 3 [ - (1/2) , (1/2) ] S. The domain of g is 4 ( - ∞, 0) ∪ (0 , ∞) 5 ( - ∞ , (e/e - 1) ] 6 (- ∞ , 0 ) ∪ ( (1/2) , (e/e - 1) ] The correct option is:
Q.
Let and .
(Here, the inverse trigonometric function assumes values in .)
Let be the function defined by
and be the function defined by .
List-I
List-II
P.
The range of f is
1.
Q.
The range of f contains
2
(0,1)
R.
The domain of f contains
3
S.
The domain of g is
4
5
6
The correct option is:
List-I | List-II | ||
---|---|---|---|
P. | The range of f is | 1. | |
Q. | The range of f contains | 2 | (0,1) |
R. | The domain of f contains | 3 | |
S. | The domain of g is | 4 | |
5 | |||
6 |
Solution: