Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $E_{1} = \left\{x \in \mathbb R : x \ne1 and \frac{x}{x-1} > 0\right\}$ and $ E_{2} =\left\{x \in E_{1} : \sin^{-1}\left(\log_{e} \left(\frac{x}{x-1}\right)\right) is \, a \, real \, number\right\}$.
(Here, the inverse trigonometric function $\sin^{-1} x$ assumes values in $\left( - \frac{\pi}{2} , \frac{\pi}{2} \right]$ .)
Let $f :E_1 \to \mathbb R $ be the function defined by $f(x) = \log_e (\frac{x}{x-1})$
and $g : E_2 \to \mathbb R $ be the function defined by $g(x) = \sin^{-1} \left( \log_e \left( \frac{x}{x-1} \right) \right)$.
List-I List-II
P. The range of f is 1. $\left(- \infty ,. \frac{1}{1 -e} \right] \cup \left[ \frac{e}{e -1} , \infty \right)$
Q. The range of f contains 2 (0,1)
R. The domain of f contains 3 $\left[ - \frac{1}{2} , \frac{1}{2} \right]$
S. The domain of g is 4 $( - \infty, 0) \cup (0 , \infty)$
5 $\left( - \infty , \frac{e}{e - 1} \right]$
6 $(- \infty , 0 ) \cup \left( \frac{1}{2} , \frac{e}{e - 1} \right]$

The correct option is:

JEE AdvancedJEE Advanced 2018

Solution:

$E_{1} : \frac{x}{x-1} > 0 $
$\Rightarrow E_{1} :x \in\left(- \infty , 0 \right)\cup\left(1, \infty\right) $
$E_{2} : - 1 \le ln \left(\frac{x}{x+1}\right) \le1 $
$ \frac{1}{e} \le \frac{x}{x+1} \le e $
Now $ \frac{x}{x-1} - \frac{1}{e} \ge0 $
$ \Rightarrow \frac{\left(e-1\right) x+1}{e\left(x-1\right)} \ge 0 $
Now P $\to$ 4, Q $\to$ 2, R $\to$ 1 , S $\to$ 1
Hence A is correct