Q.
Let $E_{1} = \left\{x \in \mathbb R : x \ne1 and \frac{x}{x-1} > 0\right\}$ and $ E_{2} =\left\{x \in E_{1} : \sin^{-1}\left(\log_{e} \left(\frac{x}{x-1}\right)\right) is \, a \, real \, number\right\}$.
(Here, the inverse trigonometric function $\sin^{-1} x$ assumes values in $\left( - \frac{\pi}{2} , \frac{\pi}{2} \right]$ .)
Let $f :E_1 \to \mathbb R $ be the function defined by $f(x) = \log_e (\frac{x}{x-1})$
and $g : E_2 \to \mathbb R $ be the function defined by $g(x) = \sin^{-1} \left( \log_e \left( \frac{x}{x-1} \right) \right)$.
List-I
List-II
P.
The range of f is
1.
$\left(- \infty ,. \frac{1}{1 -e} \right] \cup \left[ \frac{e}{e -1} , \infty \right)$
Q.
The range of f contains
2
(0,1)
R.
The domain of f contains
3
$\left[ - \frac{1}{2} , \frac{1}{2} \right]$
S.
The domain of g is
4
$( - \infty, 0) \cup (0 , \infty)$
5
$\left( - \infty , \frac{e}{e - 1} \right]$
6
$(- \infty , 0 ) \cup \left( \frac{1}{2} , \frac{e}{e - 1} \right]$
The correct option is:
List-I | List-II | ||
---|---|---|---|
P. | The range of f is | 1. | $\left(- \infty ,. \frac{1}{1 -e} \right] \cup \left[ \frac{e}{e -1} , \infty \right)$ |
Q. | The range of f contains | 2 | (0,1) |
R. | The domain of f contains | 3 | $\left[ - \frac{1}{2} , \frac{1}{2} \right]$ |
S. | The domain of g is | 4 | $( - \infty, 0) \cup (0 , \infty)$ |
5 | $\left( - \infty , \frac{e}{e - 1} \right]$ | ||
6 | $(- \infty , 0 ) \cup \left( \frac{1}{2} , \frac{e}{e - 1} \right]$ |
JEE AdvancedJEE Advanced 2018
Solution: