Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let E1: (x2/a2)+(y2/b2)=1, a>b . Let E2 be another ellipse such that it touches the end points of major axis of E1 and the foci of E2 are the end points of minor axis of E1 . If E1 and E2 have same eccentricities, then its value is:
Q. Let
E
1
:
a
2
x
2
+
b
2
y
2
=
1
,
a
>
b
.
Let
E
2
be another ellipse such that it touches the end points of major axis of
E
1
and the foci of
E
2
are the end points of minor axis of
E
1
.
If
E
1
and
E
2
have same eccentricities, then its value is:
304
195
JEE Main
JEE Main 2021
Conic Sections
Report Error
A
2
−
1
+
5
29%
B
2
−
1
+
8
14%
C
2
−
1
+
3
57%
D
2
−
1
+
6
0%
Solution:
e
2
=
1
−
a
2
b
2
e
2
=
1
−
c
2
a
2
⇒
a
2
b
2
=
c
2
a
2
⇒
c
2
=
b
2
a
4
⇒
c
=
b
a
2
Also
b
=
ce
⇒
c
=
e
b
e
b
=
b
a
2
⇒
e
=
a
2
b
2
=
1
−
e
2
⇒
e
2
+
e
−
1
=
0
⇒
e
=
2
−
1
+
5