Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let E1 and E2 be two events such that the conditional probabilities P ( E 1 mid E 2)=(1/2), P ( E 2 mid E 1)=(3/4) and P ( E 1 ∩ E 2)=(1/8). Then:
Q. Let
E
1
and
E
2
be two events such that the conditional probabilities
P
(
E
1
∣
E
2
)
=
2
1
,
P
(
E
2
∣
E
1
)
=
4
3
and
P
(
E
1
∩
E
2
)
=
8
1
. Then:
1386
166
JEE Main
JEE Main 2022
Probability - Part 2
Report Error
A
P
(
E
1
∩
E
2
)
=
P
(
E
1
)
⋅
P
(
E
2
)
0%
B
P
(
E
1
′
∩
E
2
′
)
=
P
(
E
1
′
)
⋅
P
(
E
2
)
0%
C
P
(
E
1
∩
E
2
′
)
=
P
(
E
1
)
⋅
P
(
E
2
)
100%
D
P
(
E
1
′
∩
E
2
)
=
P
(
E
1
)
⋅
P
(
E
2
)
0%
Solution:
(A)
P
(
E
1
)
⋅
P
(
E
2
)
=
6
1
⋅
4
1
=
24
1
=
P
(
E
1
∩
E
2
)
(B)
P
(
E
1
′
∩
E
2
′
)
=
1
−
P
(
E
1
∪
E
2
)
=
1
−
(
P
(
E
1
)
+
P
(
E
2
)
−
P
1
E
1
∩
E
2
)
)
=
1
−
(
6
1
+
4
1
−
8
1
)
=
24
17
P
(
E
1
′
)
P
(
E
2
)
=
6
5
×
4
1
=
24
5
(C)
P
(
E
1
∩
E
2
′
)
=
P
(
E
1
)
−
P
(
E
1
∩
E
2
)
=
6
1
−
8
1
=
24
1
(D)
P
(
E
1
′
∩
E
2
)
=
P
(
E
2
)
−
P
(
E
1
∩
E
2
)
=
4
1
−
8
1
=
8
1