Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let e1 and e2 are eccentricities of (x2/18)+(y2/4)=1 and (x2/9)-(y2/4)=1 respectively and (e1 , e2) lies on 15x2+3y2=k . Find the value of k
Q. Let
e
1
and
e
2
are eccentricities of
18
x
2
+
4
y
2
=
1
and
9
x
2
−
4
y
2
=
1
respectively and
(
e
1
,
e
2
)
lies on
15
x
2
+
3
y
2
=
k
. Find the value of
k
98
175
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
16
Solution:
For ellipse
4
=
18
(
1
−
e
1
2
)
e
1
2
=
9
7
e
1
=
3
7
for hyperbola :
4
=
9
(
e
2
2
−
1
)
e
2
=
3
13
Put
(
e
1
,
e
2
)
in
15
x
2
+
3
y
2
=
k
15
×
9
7
+
9
3.13
=
k
k
=
16