Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let displaystyle lim x arrow 0 (x sin x+ log (1-x)x/x3)=(m/n) where G.C.D. (m, n)=1 then find |m n|.
Q. Let
x
→
0
lim
x
3
x
sin
x
+
lo
g
(
1
−
x
)
x
=
n
m
where G.C.D.
(
m
,
n
)
=
1
then find
∣
mn
∣
.
51
162
Limits and Derivatives
Report Error
Answer:
2
Solution:
Let
L
=
x
→
0
lim
x
3
x
sin
x
+
lo
g
(
1
−
x
)
x
L
=
x
→
0
lim
⎝
⎛
x
3
x
(
x
−
3
!
x
3
+
5
!
x
5
−
…
)
+
x
(
−
x
−
2
x
2
−
3
x
3
−
…
)
⎠
⎞
=
x
→
0
lim
(
−
2
1
+
terms containing
x
and powers of
x
)
⇒
L
=
−
2
1
⇒
m
=
−
1
,
n
=
2
or
m
=
1
,
n
=
−
2
⇒
∣
mn
∣
=
2