Q.
Let ∫sin(2x)ln(cosx)dx=f(x)(cos)2x+C (where, C is the constant of integration) and f(0)=21 . If f(3π) is equal to a1+lnb , then the value of a+b is
Given integral is I=∫2sinxcosxln(cosx)dx
Let, cosx=t ⇒−sinxdx=dt ⇒I=−2∫tlntdt
Using Integration by parts I=−2(2t2lnt−∫2t2t1dt) I=−t2lnt+2t2+C I=(cos)2x(21−lncosx)+C f(x)=21−ln(cosx) f(3π)=21−ln(21) =21+ln2 ⇒a=b=2 ∴a+b=4