Case-I If Δ≡∇≡∧ (p∧q)→((p∧q)∧r)
it can be false if r is false,
so not a tautology
Case-II If Δ≡∇≡∨ (p∨q)→((p∨q)∨r)≡ tautology
then (p∨q)∨r≡(pΔr)∨q
Case-III if Δ=∨,∇=∧
then (p∧q)→{(p∨q)∧r}
Not a tautology ( Check p →T,q→T,r→F)
Case-IV if Δ=∧,∇=∨ (p∧q)→{(p∧q)∨r}
Not a tautology