Q.
Let d1 and d2 be the lengths of the perpendiculars drawn from the foci S and S′ of the ellipse a2x2+b2y2=1 to the tangent at any point P on the ellipse. Then, SP:S′P=
Tangent at P(acosα,bsinα) is axcosα+bysinα=1....(i)
The distance of focus S(ae,0) from this tangent is d1=a2cos2α+b2sin2α∣ecosα−1∣ =a2cos2α+b2sin2α1−ecosα
The distance of focus S′(−ae,0) from this line is d2=a2cos2α+b2sin2α1+ecosα
or d2d1=1+ecosα1−ecosα
Now, SP=a−aecosα
and S′P=a+aecosα
or S′PSP=1+ecosα1−ecosα=d2d1