Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let D1=|a b a+b c d c+d a b a-b| and D2=|a c a+c b d b+d a c a+b+c| then the value of (D1/D2) where b ≠ 0 and ad ≠ bc, is
Q. Let
D
1
=
∣
∣
a
c
a
b
d
b
a
+
b
c
+
d
a
−
b
∣
∣
and
D
2
=
∣
∣
a
b
a
c
d
c
a
+
c
b
+
d
a
+
b
+
c
∣
∣
then the value of
D
2
D
1
where
b
=
0
and
a
d
=
b
c
, is
472
79
Determinants
Report Error
A
-2
B
0
C
−
2
b
D
2
b
Solution:
Using:
C
3
→
C
3
−
(
C
1
+
C
2
)
,
D
1
=
∣
∣
a
c
a
b
d
b
a
+
b
c
+
d
a
−
b
∣
∣
and
D
2
=
∣
∣
a
b
a
c
d
c
a
+
c
b
+
d
a
+
b
+
c
∣
∣
∴
D
2
D
1
=
b
(
a
d
−
b
c
)
−
2
b
(
a
d
−
b
c
)
=
−
2