Q. Let $D_1=\begin{vmatrix}a & b & a+b \\ c & d & c+d \\ a & b & a-b\end{vmatrix}$ and $D_2=\begin{vmatrix}a & c & a+c \\ b & d & b+d \\ a & c & a+b+c\end{vmatrix}$ then the value of $\frac{D_1}{D_2}$ where $b \neq 0$ and $ad \neq bc$, is
Determinants
Solution: