f(x)=(c+1)x2+(1−c2)x+2k&f(x+y)=f(x)+f(y)−xy∀xy∈Rlimy→0yf(x+y)−f(x)=limy→0yf(y)−xyf(x)=−21x2+f′(0)⋅x+λ but f(0)=0∴(x)=−21x2+(1−c2)⋅x∴ as f′(0)=1−c2
Comparing equation (1) and (2)
We obtain, c=−3/2 ∴f(x)=−21x2−45x
Now ∣∣2∑x=120f(x)∣∣=∑x=120x2+25⋅∑x=120x =2870+525 =3395