Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let C be the set of all complex numbers. Let S1= z ∈ C|| z-3-.2 i|2=8 S2= z ∈ C mid Re(z) ≥ 5 and S3= z ∈ C|| z- barz ≥ 8 Then the number of elements in S1 ∩ S2 ∩ S3 is equal to
Q. Let
C
be the set of all complex numbers. Let
S
1
=
{
z
∈
C
∣∣
z
−
3
−
2
i
∣
2
=
8
}
S
2
=
{
z
∈
C
∣
R
e
(
z
)
≥
5
}
and
S
3
=
{
z
∈
C
∣∣
z
−
z
ˉ
≥
8
}
Then the number of elements in
S
1
∩
S
2
∩
S
3
is equal to
998
168
JEE Main
JEE Main 2021
Complex Numbers and Quadratic Equations
Report Error
A
1
15%
B
0
69%
C
2
0%
D
Infinite
15%
Solution:
S
1
:
∣
z
−
3
−
2
i
∣
2
=
8
∣
z
−
3
−
2
i
∣
=
2
2
(
x
−
3
)
2
+
(
y
−
2
)
2
=
(
2
2
)
2
S
2
:
x
≥
5
S
3
:
∣
z
−
z
ˉ
∣
≥
8
∣2
i
y
∣
≥
8
2∣
y
∣
≥
8
∴
y
≥
4
,
y
≤
−
4
n
S
1
∩
S
2
∩
S
3
=
1