Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let C0, C1,..., Cn denotes the binomial coefficients in the expansion of (1 + x)n. The value of C1 - 2C2 + 3C3 - 4C4 +........ (upto n terms) is
Q. Let
C
0
,
C
1
,
...
,
C
n
denotes the binomial coefficients in the expansion of
(
1
+
x
)
n
. The value of
C
1
−
2
C
2
+
3
C
3
−
4
C
4
+
........
(upto
n
terms) is
2257
202
UPSEE
UPSEE 2011
Report Error
A
2
n
B
2
−
n
C
0
D
1
Solution:
Since,
(
1
+
x
)
n
=
C
0
+
C
1
x
+
C
2
x
2
+
…
+
C
n
x
n
On differentiating w.r.t.
x
, we get
n
(
1
+
x
)
n
−
1
=
C
1
+
2
C
1
x
+
…
+
n
⋅
C
n
x
n
−
1
Put
x
=
−
1
, we get
0
=
C
1
−
2
⋅
C
1
+
…
+
(
−
1
)
n
−
1
⋅
n
⋅
C
n