Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let β= displaystyle lim x arrow 0 (α x-(e3 x-1)/α x(e3 x-1)) for some α ∈ R. Then the value of α+β is :
Q. Let
β
=
x
→
0
lim
αx
(
e
3
x
−
1
)
αx
−
(
e
3
x
−
1
)
for some
α
∈
R
. Then the value of
α
+
β
is :
909
0
JEE Main
JEE Main 2022
Limits and Derivatives
Report Error
A
5
14
8%
B
2
3
44%
C
2
5
26%
D
2
7
23%
Solution:
β
=
x
→
0
lim
αx
(
e
3
x
−
1
)
αx
−
(
e
3
x
−
1
)
β
=
x
→
0
lim
(
αx
)
3
x
(
e
3
x
−
1
)
3
x
1
+
αx
−
[
1
+
3
x
+
2
!
9
x
2
+
…
..
]
β
=
x
→
0
lim
3
α
x
2
(
αx
−
3
x
)
−
2
!
9
x
2
−
……
For existence of limit
α
−
3
=
0
α
=
3
Limit
β
=
2
α
−
3
β
=
−
2
1
Now,
α
+
β
=
2
5