Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let < an > be an arithmetic sequence such that arithmetic mean of a1, a3, a5, ldots ldots, a97, a99 is 1 Find the value of | displaystyle∑r=150(-1)(r(r+1)/2) ⋅ a2 r-1|.
Q. Let
<
a
n
>
be an arithmetic sequence such that arithmetic mean of
a
1
,
a
3
,
a
5
,
……
,
a
97
,
a
99
is 1 Find the value of
∣
∣
r
=
1
∑
50
(
−
1
)
2
r
(
r
+
1
)
⋅
a
2
r
−
1
∣
∣
.
711
116
Sequences and Series
Report Error
Answer:
2
Solution:
a
1
+
a
3
+
…
+
a
99
=
50
⇒
a
+
a
+
2
d
+
a
+
4
d
+
…
a
+
98
d
=
50
50
a
+
2
d
(
1
+
2
+
…
+
49
)
=
50
⇒
50
a
+
2
2
d
(
50
)
(
49
)
=
50
a
+
49
d
=
1
a
50
=
1
∣
∣
r
=
1
∑
50
(
−
1
)
2
r
(
r
+
1
)
⋅
a
2
r
−
1
∣
∣
−
a
1
−
a
3
+
a
5
+
a
7
−
a
9
−
a
11
+
…
+
a
93
+
a
95
−
a
97
−
a
99
(26 negative terms and
24
positive)
⇒
∣
−
a
1
−
a
99
∣
=
∣
−
2
a
−
98
d
∣
⇒
∣
−
2∣
⇒
2