Q.
Let zˉ denote the complex conjugate of a complex number z and let i=−1. In the set of complex numbers, the number of distinct roots of the equation zˉ−z2=i(zˉ+z2) is ___
Z−z2=i(Z+z2) ⇒(1−i)z=(1+i)z2 ⇒(1+i)(1−i)z=z2 ⇒(−22i)z=z2 ∴z2=−iz
Let z=x+iy, ∴(x2−y2)+i(2xy)=−i(x−iy)
so, x2−y2+y=0....(1)
and (2y+1)x=0...(2) ⇒x=0 or y=−21
Case I: When x=0 ∴(1)⇒y(1−y)=0⇒y=0,1 ∴(0,0),(0,1)
Case II : When y=−21 ∴(1)⇒x2−41−21=0⇒x2=43⇒x=±23 ∴(23,−21),(−23,−21) ⇒ Number of distinct ' z ' is equal to 4.