Q.
Let bˉz+bzˉ=c,b=0, be a line in the complex plane, where bˉ is the complex conjugate of b. If a point z1 is the reflection of a point z2 through the line, then zˉ1b+z2bˉ=
1880
201
Complex Numbers and Quadratic Equations
Report Error
Solution:
The given line is bˉz+bzˉ=c
Let A(z1) be a reflection of B(z2) in the line (1).
Let P(z) be any point on the line (1).
We have, AP=BP ⇒∣AP∣2=∣BP∣2 ⇒∣z−z1∣2=∣z−z2∣2 ⇒(z−z1)(zˉ−zˉ1)=(z−z2)(zˉ−zˉ2) ⇒(zˉ2−zˉ1)z+(z2−z1)zˉ+z1zˉ−z2zˉ2=0
Since (1) and (2) represent the same line, we get zˉ2−zˉ1bˉ=z2−z1b=z1zˉ1−z2zˉ2c=k( say ) ⇒k(zˉ2−zˉ1)=bˉ,k(z2−z1)=b,k(z1zˉ1−z2zˉ2)=c
Now, zˉ1b+z2bˉ =zˉ1{k(z2−z1)}+z2{k(zˉ2−zˉ1)} =k{zˉ1z2−z1zˉ1+zˉ2z2−z2zˉ1} =k(z2zˉ2−z1zˉ1)=c