Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let B=[1 2 0 1] and A be a 2 × 2 matrix satisfying (AT)-1= A. If X=A B AT, then AT X2021 A=
Q. Let
B
=
[
1
0
2
1
]
and
A
be a
2
×
2
matrix satisfying
(
A
T
)
−
1
=
A. If
X
=
A
B
A
T
, then
A
T
X
2021
A
=
1947
137
TS EAMCET 2021
Report Error
A
[
1
0
2
2021
1
]
B
[
1
0
2021
1
]
C
[
1
0
0
1
]
D
[
1
0
4042
1
]
Solution:
(
A
T
)
−
1
=
A
⇒
A
T
(
A
T
)
−
1
=
A
T
⋅
A
=
I
A
T
X
A
=
A
T
(
A
B
A
T
)
A
=
(
A
T
A
)
B
(
A
T
A
)
=
B
A
T
X
2
A
=
A
T
(
A
B
A
T
)
(
A
B
A
T
)
A
=
(
A
T
A
)
B
(
A
T
A
)
B
(
A
T
A
)
=
B
2
Similarly,
A
T
X
2021
A
=
B
2021
B
=
[
1
0
2
1
]
B
2
=
[
1
0
2
1
]
[
1
0
2
1
]
=
[
1
0
4
1
]
B
3
=
[
1
0
4
1
]
[
1
0
2
1
]
=
[
1
0
6
1
]
B
4
=
[
1
1
6
1
]
[
1
0
2
1
]
=
[
1
0
8
1
]
B
n
=
[
1
0
2
n
1
]
∴
B
2021
=
[
1
0
4042
1
]