Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ð, ð, ð¥ and ð¦ be real numbers such that ð â ð = 1 and ð¦ â 0. If the complex number ð§ = ð¥ + ðð¦ satisfies Im((az+b/z+1))=y, then which of the following is(are) possible value(s) of ð¥?
Q. Let
a
,
b
,
x
and
y
be real numbers such that
a
−
b
=
1
and
y
=
0
. If the complex number
z
=
x
+
i
y
satisfies
I
m
(
z
+
1
a
z
+
b
)
=
y
, then which of the following is(are) possible value(s) of 𝑥?
1625
185
JEE Advanced
JEE Advanced 2017
Complex Numbers and Quadratic Equations
Report Error
A
−
1
+
1
−
y
2
B
−
1
−
1
−
y
2
C
1
+
1
+
y
2
D
1
−
1
+
y
2
Solution:
Im
(
z
+
1
a
z
+
b
)
=
y
⇒
Im
(
x
+
i
y
+
1
a
(
x
+
i
y
)
+
b
)
=
y
⇒
Im
(
(
x
+
1
)
+
i
y
ai
y
+
(
a
x
+
b
)
×
((
x
+
1
)
−
i
y
)
((
x
+
1
)
−
i
y
)
)
=
y
⇒
(
x
+
1
)
2
+
y
2
a
y
(
x
+
1
)
−
y
(
a
x
+
b
)
=
y
⇒
(
a
−
b
)
y
=
y
(
(
x
+
1
)
2
+
y
2
)
(
x
+
1
)
2
+
y
2
=
1
x
=
−
1
±
1
−
y
2
(
∵
a
−
b
=
1
)
x
=
−
1
−
y
2